Estimation of subnational tuberculosis burden
Finding gaps in routine surveillance activities in Bangladesh by linking prevalence survey and case notification data

Adrien Allorant, PhDc
University of Washington

March 23rd 2021
Introduction
Where are the missed Tuberculosis (TB) cases?

WHO’s End TB strategy and SDG 3.3
- Reducing TB deaths by 95% and new cases by 90% between 2015 and 2035
- Globally, 41% people who develop TB every year missing from care; greatest challenge in high-burden countries

Bangladesh is a high-burden country for TB
- Estimated 361K incident cases and 38K deaths in 2019
- Two national prevalence surveys: 2007-09, and 2015-16

Prior spatial investigations of TB in Bangladesh
- KIT Royal Institute and NTP found large sub-national variations in TB case notification rates (CNR)
- Areas with low CNR suggest potential for missed cases
Study aims
Producing metrics to identify people living with TB missed by the health system

Knowledge gap
CNR are a product of TB program effectiveness and underlying TB burden. Assessing sub-national disparities in routine surveillance activities requires estimates of local TB burden.

Specific Aims
1. Present methods to analyze national TB prevalence survey sub-nationally
2. Provide actionable estimates of the TB epidemics in Bangladesh at a policy-relevant unit of analysis
3. Identify areas with the largest number of TB cases missing from care
Data

Prevalence survey data
- 2015-16 National prevalence survey
 - Considered 2009-11 prevalence survey
- 98,710 individuals across 125 sampled clusters
- 278 bacteriological confirmed cases

Case notifications
- Data collected from NTP 2012-2016
- Reported for each 64 districts (by age/sex groups)

Population & socio-demographic/environmental data
- Population data by district from Bangladesh 2011 census
 - Used to calculate counts from rates
- Socio-demographic/environmental covariates considered
Statistical analysis

Estimating TB prevalence rates
- Districts with no or one cluster
- Undefined/untrustworthy estimates
- Area-level model → precision

\[
\begin{align*}
\text{logit}(p_{HT}^i) & \sim N(\theta_i, V_i) \\
\theta_i & = X_i^T \beta + \epsilon_i + S_i
\end{align*}
\] (1a) (1b)

where \(\epsilon_i \sim N(0, \sigma^2_\epsilon)\), \(S_i = 1, \ldots, n \sim \text{ICAR}\)

Prevalence-to-notification ratio
\[P : N_i = \frac{\hat{p}_i}{\text{CNR}_i}, \hat{p}_i = \exp(\hat{\theta}_i)\]
from (1b)

Counterfactual analysis
How many more cases notified if district did at least as well as national prevalence-to-notification ratio? (\(P : N_0 = 2.8\))

\[N_i^* = \frac{\hat{p}_i}{\min(P : N_i, 2.8)} \Rightarrow N_i^* - N_i \]
"Missed cases" (notifications)

Figure – Observed prevalence at clusters
Outline

1. Background
2. Methodology
3. Results
4. Discussion
5. Appendix
TB prevalence rates by districts

Figure – Estimated TB mean prevalence (per 100,000) (a), and 97.5th (b) and 2.5th (c) percentiles
Figure – Estimated mean number of people living with TB (a), and 97.5th (b) and 2.5th (c) percentiles
TB prevalence-to-notification ratio by districts

Figure – Estimated mean TB prevalence-to-notification ratio (a), and 97.5th (b) and 2.5th (c) percentiles
"Missed TB cases" (notifications) by districts

Figure – Estimated mean additional cases that could be notified (a), and 97.5th (b) and 2.5th (c) percentiles
Outline

1. Background
2. Methodology
3. Results
4. Discussion
5. Appendix
Main findings

Clear spatial patterns

1. High prevalence rates in the northern, north-eastern districts
2. Highest number of prevalence cases in same districts, along with most populated areas, including Dhaka and Chattogram
3. Largest prevalence-to-notification ratio in north-eastern districts, and most districts of Rajshahi and Dhaka divisions
 - Moderate prevalence rates, but strikingly low CNR
 - Interesting similarities with NTP/KIT study of CNR

Counterfactual analysis

- ≈ 26,500 additional cases detected if sub-national inequities in prevalence-to-notification ratio resolved
- ≈ 16,000 in just 4 districts
Limitations

Limited, older TB prevalence data

- Study focused on active TB, not latent TB infections; and did not distinguish between drug-susceptible, MDR and XDR TB
- Could not use 2007-09 survey; prevented us from estimating temporal trends
- Data from 2016; COVID may have disrupted TB services and changed geographic patterns presented here

Limited data about risk factors

- Absence of sub-national prevalence data for known TB risk factors (smoking, alcohol, diabetes)
- Estimated prevalence of over-crowding and use data about poverty, but limited use
Comparison with Kit study

Figure – Estimated mean prevalence-to-notification ratio

Figure – Rood et al., 2018, Figure 4